Solution to Rosalind problem IPRB: Mendel's First Law*

Susannah Go

November 15, 2015

Suppose that a population contains k homozygous dominant organisms, m heterozygous organisms, and n homozygous recessive organisms. Assume that any two organisms can mate. Let p be the size of the population, so $p=k+m+n$. Let A denote the event that two randomly selected mating organisms yield an offspring with the dominant phenotype. Let $B_{1}, B_{2}, \ldots B_{6}$ denote the following events:
B_{1} : both parents are homozygous dominant
B_{2} : one parent is homozygous dominant, the other is heterozygous
B_{3} : one parent is homozygous dominant, the other is homozygous recessive
B_{4} : both parents are heterozygous
B_{5} : one parent is heterozygous, the other is homozygous recessive
B_{6} : both parents are homozygous recessive
Then $P(A)$ may be computed by conditioning on the alleles of the parents:

$$
\begin{equation*}
P(A)=\sum_{i=1}^{6} P\left(A \mid B_{i}\right) P\left(B_{i}\right) \tag{1}
\end{equation*}
$$

Punnett squares are used to find the quantities $P\left(A \mid B_{i}\right)$. Using Y and y as alleles of the parents, and using a checkmark to mark offspring which will have the dominant phenotype, the Punnett squares are shown in Table 1. Based on the squares,

$$
\begin{aligned}
P\left(A \mid B_{1}\right)=P\left(A \mid B_{2}\right)= & P\left(A \mid B_{3}\right)=1 \\
& P\left(A \mid B_{4}\right)=0.75 \\
& P\left(A \mid B_{5}\right)=0.5 \\
& P\left(A \mid B_{6}\right)=0
\end{aligned}
$$

[^0]| | Y | Y |
| :---: | :---: | :---: |
| Y | \checkmark | \checkmark |
| Y | \checkmark | \checkmark |

(a) B_{1}

	Y	y
Y	\checkmark	\checkmark
Y	\checkmark	\checkmark

(b) B_{2}

	y	y
Y	\checkmark	\checkmark
Y	\checkmark	\checkmark

(c) B_{3}

	Y	y
Y	\checkmark	\checkmark
y	\checkmark	

(d) B_{4}

	y	y
Y	\checkmark	\checkmark
y		

(e) B

	y	y
y		
y		

(f) B_{6}

Table 1: Punnett squares for $B_{1}, B_{2}, \ldots B_{6} ; \checkmark$ denotes the dominant phenotype

Now we must calculate $P\left(B_{i}\right)$ for $i=1,2, \ldots, 6$. Recall that the parent organisms are randomly chosen from the population, so the probability of choosing two homozygous dominant organisms is $P\left(B_{1}\right)=\left(\frac{k}{p}\right)\left(\frac{k-1}{p-1}\right)$. Similar calculations are used for $P\left(B_{4}\right)$ and $P\left(B_{6}\right)$:

$$
\begin{aligned}
& P\left(B_{4}\right)=\left(\frac{m}{p}\right)\left(\frac{m-1}{p-1}\right) \\
& P\left(B_{6}\right)=\left(\frac{n}{p}\right)\left(\frac{n-1}{p-1}\right)
\end{aligned}
$$

Now let us consider $P\left(B_{2}\right)$. There are two ways for event B_{2} to occur: either the first parent is homozygous dominant and the second parent is heterozygous, or vice versa. So $P\left(B_{2}\right)=\left(\frac{k}{p}\right)\left(\frac{m}{p-1}\right)+\left(\frac{m}{p}\right)\left(\frac{k}{p-1}\right)$. Similar calculations are used for $P\left(B_{3}\right)$ and $P\left(B_{5}\right)$:

$$
\begin{aligned}
& P\left(B_{3}\right)=\left(\frac{k}{p}\right)\left(\frac{n}{p-1}\right)+\left(\frac{n}{p}\right)\left(\frac{k}{p-1}\right) \\
& P\left(B_{5}\right)=\left(\frac{m}{p}\right)\left(\frac{n}{p-1}\right)+\left(\frac{n}{p}\right)\left(\frac{m}{p-1}\right)
\end{aligned}
$$

We have all the quantities we need, and substituting them all into Equation 1 yields a rather lengthy equation:

$$
\begin{aligned}
P(A)= & 1\left(\frac{k}{p}\right)\left(\frac{k-1}{p-1}\right)+1\left[\left(\frac{k}{p}\right)\left(\frac{m}{p-1}\right)+\left(\frac{m}{p}\right)\left(\frac{k}{p-1}\right)\right]+ \\
& 1\left[\left(\frac{k}{p}\right)\left(\frac{n}{p-1}\right)+\left(\frac{n}{p}\right)\left(\frac{k}{p-1}\right)\right]+0.75\left(\frac{m}{p}\right)\left(\frac{m-1}{p-1}\right)+ \\
& 0.5\left[\left(\frac{m}{p}\right)\left(\frac{n}{p-1}\right)+\left(\frac{n}{p}\right)\left(\frac{m}{p-1}\right)\right]+0\left(\frac{n}{p}\right)\left(\frac{n-1}{p-1}\right)
\end{aligned}
$$

This can be simplified, of course:

$$
\begin{aligned}
P(A) & =\frac{k(k-1)}{p(p-1)}+\frac{2 k m}{p(p-1)}+\frac{2 k n}{p(p-1)}+\frac{3 m(m-1)}{4 p(p-1)}+\frac{m n}{p(p-1)} \\
& =\frac{4 k(k-1)+3 m(m-1)+4(2 k m+2 k n+m n)}{4 p(p-1)}
\end{aligned}
$$

[^0]: *http://rosalind.info/problems/iprb/

