Solution to Rosalind problem IPRB: Mendel's First Law^{*}

Susannah Go

November 15, 2015

Suppose that a population contains k homozygous dominant organisms, m heterozygous organisms, and n homozygous recessive organisms. Assume that any two organisms can mate. Let p be the size of the population, so p = k + m + n. Let A denote the event that two randomly selected mating organisms yield an offspring with the dominant phenotype. Let $B_1, B_2, \ldots B_6$ denote the following events:

- B_1 : both parents are homozygous dominant
- B_2 : one parent is homozygous dominant, the other is heterozygous
- B_3 : one parent is homozygous dominant, the other is homozygous recessive
- B_4 : both parents are heterozygous
- B_5 : one parent is heterozygous, the other is homozygous recessive
- B_6 : both parents are homozygous recessive

Then P(A) may be computed by conditioning on the alleles of the parents:

$$P(A) = \sum_{i=1}^{6} P(A \mid B_i) P(B_i)$$
(1)

Punnett squares are used to find the quantities $P(A \mid B_i)$. Using Y and y as alleles of the parents, and using a checkmark to mark offspring which will have the dominant phenotype, the Punnett squares are shown in Table 1. Based on the squares,

$$P(A \mid B_1) = P(A \mid B_2) = P(A \mid B_3) = 1$$
$$P(A \mid B_4) = 0.75$$
$$P(A \mid B_5) = 0.5$$
$$P(A \mid B_6) = 0$$

^{*}http://rosalind.info/problems/iprb/

	Y	Y		Y	у		у	y		Y	у		у	у		y	y y
Y	\checkmark	\checkmark	Y	\checkmark	\checkmark	y											
Y	\checkmark	\checkmark	Y	\checkmark	\checkmark	Y	\checkmark	\checkmark	у	\checkmark		у			y		
(a) B_1			(b) B_2			(c) B_3			(d) B_4			(e) <i>B</i>			(f) B_6		

Table 1: Punnett squares for B_1, B_2, \ldots, B_6 ; \checkmark denotes the dominant phenotype

Now we must calculate $P(B_i)$ for i = 1, 2, ..., 6. Recall that the parent organisms are randomly chosen from the population, so the probability of choosing two homozygous dominant organisms is $P(B_1) = {k \choose p} {k-1 \choose p-1}$. Similar calculations are used for $P(B_4)$ and $P(B_6)$:

$$P(B_4) = \left(\frac{m}{p}\right) \left(\frac{m-1}{p-1}\right)$$
$$P(B_6) = \left(\frac{n}{p}\right) \left(\frac{n-1}{p-1}\right)$$

Now let us consider $P(B_2)$. There are two ways for event B_2 to occur: either the first parent is homozygous dominant and the second parent is heterozygous, or vice versa. So $P(B_2) = {k \choose p} {m \choose p-1} + {m \choose p} {k \choose p-1}$. Similar calculations are used for $P(B_3)$ and $P(B_5)$:

$$P(B_3) = \left(\frac{k}{p}\right) \left(\frac{n}{p-1}\right) + \left(\frac{n}{p}\right) \left(\frac{k}{p-1}\right)$$
$$P(B_5) = \left(\frac{m}{p}\right) \left(\frac{n}{p-1}\right) + \left(\frac{n}{p}\right) \left(\frac{m}{p-1}\right)$$

We have all the quantities we need, and substituting them all into Equation 1 yields a rather lengthy equation:

$$P(A) = 1 \left(\frac{k}{p}\right) \left(\frac{k-1}{p-1}\right) + 1 \left[\left(\frac{k}{p}\right) \left(\frac{m}{p-1}\right) + \left(\frac{m}{p}\right) \left(\frac{k}{p-1}\right)\right] + 1 \left[\left(\frac{k}{p}\right) \left(\frac{n}{p-1}\right) + \left(\frac{n}{p}\right) \left(\frac{k}{p-1}\right)\right] + 0.75 \left(\frac{m}{p}\right) \left(\frac{m-1}{p-1}\right) + 0.5 \left[\left(\frac{m}{p}\right) \left(\frac{n}{p-1}\right) + \left(\frac{n}{p}\right) \left(\frac{m}{p-1}\right)\right] + 0 \left(\frac{n}{p}\right) \left(\frac{n-1}{p-1}\right)$$

This can be simplified, of course:

$$P(A) = \frac{k(k-1)}{p(p-1)} + \frac{2km}{p(p-1)} + \frac{2kn}{p(p-1)} + \frac{3m(m-1)}{4p(p-1)} + \frac{mn}{p(p-1)}$$
$$= \frac{4k(k-1) + 3m(m-1) + 4(2km + 2kn + mn)}{4p(p-1)}$$